
 Converging HTC-HPC: Two Case Studies

Shantenu Jha, Matteo Turilli
 For the BigPanDA Team (BNL, UTA, ORNL)

Rutgers Advanced DIstributed Cyberinfrastructure & Applications Laboratory
 (RADICAL)

http://radical.rutgers.edu

http://radical.rutgers.edu
http://radical.rutgers.edu

● Understanding the space of “high-throughput” computing
● Abstractions and Execution Models
● Case Study: ATLAS on Titan

○ Overview of PanDA
○ PanDA on Titan

● Case Study: Ensemble-based bio-molecular simulations

Outline

High-throughput Computing

● High-throughput is:
○ When the workload is comprised of multiple tasks.
○ Workload of a single application or a single workflow or multiple workflows

as part of a computational campaign
○ Typically characterized by the number of tasks executed

● High-throughput computing can also have:
○ Temporal dimension (e.g., minimise the time to execute tasks)
○ Concurrency dimension (e.g., maximise the number of tasks executed)

● High-throughput computing is not:
○ Confined to single core (single node) tasks
○ Only embarrassingly parallel set of tasks

● Parameters that need to be understood:
● NT = Number of tasks
● NR = Number of resources
● ST = Size of each task (#cores)
● tT = Duration of each task

(modulo performance of resource)
● NJ = Num. of jobs (land system scheduler)

High-throughput Computing

● Parameters that need to be understood:
● NT = Number of tasks
● NR = Number of resources
● ST = Size of each task (#cores)
● tT = Duration of each task

(modulo performance of resource)
● NJ = Num. of jobs (land system scheduler)

● (traditional) HTC:
○ NT > 1, NT ≥ NR, NR = 1

High-throughput Computing

● Parameters that need to be understood:
● NT = Number of tasks
● NR = Number of resources
● ST = Size of each task (#cores)
● tT = Duration of each task

(modulo performance of resource)
● NJ = Num. of jobs (land system scheduler)

● (traditional) HTC:
○ NT > 1, NT ≥ NR, NR = 1

● Regime of distributed HTC (D-HTC)
○ ST = 1, NR > 1 (tT < 12h)

High-throughput Computing

High-throughput Computing

● Parameters that need to be understood:
● NT = Number of tasks
● NR = Number of resources
● ST = Size of each task (#cores)
● tT = Duration of each task

(modulo performance of resource)
● NJ = Num. of jobs (land system scheduler)

● (traditional) HTC:
○ NT > 1, NT ≥ NR, NR = 1

● Regime of distributed HTC (D-HTC)
○ ST = 1, NR > 1 (tT < 12h)

● Regime of D-HTC of HPC tasks
○ ST > 1, NR > 1

● Developed algorithm to exploit
distributed task-level parallelism.

● 2005-09: Tried running O(1000)
simulations on many
supercomputers. Did not work!
Many reasons!

● Reverted running parallel
simulations, sequentially on
single resources.

● Importance of MODELS of
EXECUTION, i.e., reason which
tasks go where and when?

NT = 1000, tT > 12hrs, ST = 128-256 cores

Example of D-HTC of HPC tasks

Convergence

● Parameters that need to be understood:
● NT = Number of tasks
● NR = Number of resources
● ST = Size of each task (#cores)
● tT = Duration of each task

(modulo performance of resource)
● NJ = Number of jobs (hit system scheduler)

● Convergence due to change of platform:
○ NR > 1, ST = 1

● → NR = 1 (HPC), ST = 1
○ D-HTC to HTC of HPC tasks (HT-HPC).
○ Change in the number of NJ

NR = 1

Abstractions and Models of Adaptive Execution on
Dynamical Resources

● Supporting high-throughput
computing requires abstraction and
models at multiple levels

● Four Layers:

○ L4: Application

○ L3: Workload Management (WLMS)

○ L2: Task Run-time (TRS)

○ L1: Resource Access Layer

● For L2: we discuss Pilot abstraction that
has proven fundamental for HTC and
show its generalization to HPC.

HTC: Requires Support at Multiple Levels

● “.. a scheduling overlay which
generalizes the reoccurring concept of
utilizing a placeholder as a container
for compute tasks”

● Decouples workload from resource
management

● Enables fine-grained “slicing and
dicing” of resources

● Tighter temporal control, advantages
of application-level scheduling

● Build higher-level frameworks without
explicit resource management

Pilot-Abstraction (P* Model)

12

● “P*: A Model of Pilot-Abstractions”, 8th IEEE
International Conference on e-Science (2012)

● A Comprehensive Perspective on Pilot-Jobs
http://arxiv.org/abs/1508.04180 (2015)

http://arxiv.org/abs/1508.04180
http://arxiv.org/abs/1508.04180

AIMES Execution Model

● Is there an execution model for dynamically
federated heterogeneous resources that works
independent of type of infrastructural dynamism
and heterogeneity?

● AIMES Model of Execution:
○ Importance of dynamic integration of

workload and resource information.
○ Execution strategy: Temporally ordered set

of decisions that need to be made to execute
a given workload.

● Conceptual models will → better implementation
○ RADICAL-WLMS (implementing AIMES

model and Pilots) supports uniform
execution models over XSEDE and OSG!

Schematic of RADICAL-WLMS
(implementation of AIMES model) approach to
workload-resource integration: Evaluate
workload requirements & resource capabilities,
derive an execution strategy, and enact.

XSEDE - HPC
- ~10 supercomputers: ~15 PFLOP
- ~10 storage facilities: ~100 PByte
- shared allocation process & user support
- tailored toward grand challenge applications (HPC)

Distributed CyberInfrastructure: XSEDE

OSG Connect/XSEDE-vcluster - HTC
- ~100 sites, ~40,000 cores, ~1 PB (2012)
- exact composition very dynamic
- only single core machines, loosely coupled
- tailored towards high throughput (HTC)

Distributed CyberInfrastructure: OSG

ATLAS: PanDA WMS and HPC Resources Adoption

http://arxiv.org/abs/1704.00978

➔
➔

LHC Upgrade Timeline

➔
➔

LHC Upgrade Timeline

● 6 main subsystems:
○ PanDA Server (Run 1)
○ PanDA Pilot (Run 1)
○ JEDI (Run 2)
○ AutoPyFactory (Run 1)
○ PanDA Monitoring (Run 1)
○ Event Service (Run 2)

● Developed for
○ HEP workloads and workflows
○ HTC on Grid infrastructures

● Task-based and job-based execution
mode

● Support single researchers, research
groups, ATLAS production workflows.

Production and Distributed Analysis (PanDA)

● Cannot deploy PanDA Pilot on
Titan’s worker nodes (WN)

● PanDA Brokers on Titan’s DTN

● MPI scripts wrap jobs’ payload

● AthenaMP on read-only NFS
shared between DTN and WN

● Events on OLCF Lustre FS

PanDA on Titan

• ATLAS Detector Simulation
integrated with Titan (OLCF)

• Titan has already contributed a
large fraction of computing
resources for MC simulations
– Titan contributed 4.4% of total

simulation time in February 2017.

ATLAS simulation time worldwide: February 2017

Understanding Backfill Slot Availability

● Efficiency: fraction of core-hours
utilized by the PanDA Brokers to
Titan’s total backfill availability.

● Mean BF availability: 691 worker
nodes for 126 minutes.

● Up to 15K nodes for 30-100 minutes
● large margin of optimization

Static binding and sizing of tasks and jobs:
● Detector simulations of production ATLAS MC workflow
● 100 events per job (as opposed to 1000 for jobs on grid resources)
● 1 job; 1 WN; 16 AthenaMP; 100 events.

Benefits of implementing the pilot abstraction on Titan:

● Efficiency:
○ No assumption required about the number of events per simulation.
○ Jobs can be streamed to Titan when available.
○ Better walltime utilization via multiple execution generations on pilot(s).

● Workload heterogeneity:
○ No need of tailoring MPI scripts to the specifics of each type of workload.

● Resource heterogeneity:
○ No need of implementing tailored support for each HPC machine flavour.

Evolution of PanDA Deployment on Titan

● NGE behaves like a resource:
○ Exposes capabilities and

availability acquired via pilots.
● Separation of concerns NGE

independent from:
○ PanDA server
○ Type of workload

PaNDA and Next Generation Executor (NGE)

● ORTE: Open RunTime Environment
○ Isolated layer used by Open

MPI to coordinate task layout
○ Runs a set of daemons over

compute nodes
○ No ALPS concurrency limits

● Supports multiple tasks per node
○ Uses library calls instead of

orterun processes
○ No central fork/exec limits
○ Shared network socket
○ (Hardly) no central file system

interactions

NGE Agent: ORTE-LIB

● Each AthenaMP simulates 100
events in the ATLAS detector.

● One instance of AthenaMP per
Titan’s worker node; 16 Geant4
simulators per node.

● The overhead grows with the
number of units but its growth is
less than linear.

Experiments: Weak Scalability

● Each AthenaMP simulates 100
events in the ATLAS detector.

● Five sequential instances of
AthenaMP per Titan’s worker node;
16 Geant4 simulators per node.

● Stress NGE components by
creating concurrency between
starting and ending units.

● The growth of the overhead is still
less than linear.

Experiments: Weak Scalability, Multiple Generation

● Each AthenaMP simulates 100
events in the ATLAS detector.

● Each pilot is bounded with 2048
units.

● Smaller the pilot size, larger the
number of sequential AthenaMP
instances that are run by the pilot.

● The overhead remains constant
while the pilot duration decreases.

Experiments: Strong Scalability

 Biomolecular Simulations: Ensemble Execution

 Biomolecular Simulations: Ensemble Execution

BPTI, 1ms MD ~3 months on Anton (Shaw
et al, Science 2010)

New type of HTC: Bio-MD Simulations (BMS)

● Convergence: Decompose a traditional HPC
problem into an HTC problem!

● Larger biological systems
○ Typically solved by weak scaling

● Long time scale problem
○ Typically solved by strong scaling

● Gap between weak and strong scaling
capabilities will grow with “New” Moore’s Law.

● Need advances in Algorithms to address this gap
○ Scaling challenges are more than

single-partition strong and weak scaling

● Many sampling problems formulated as
ensemble methods/algorithms

● Ensemble members often interact.
○ Not a “bag-of-tasks” abstraction.
○ Replica-exchange, Adaptive Markov

State Models, Adaptive biasing...

● Different degrees and levels of coupling
between ensembles members

● A HTC problem on HPC, but traditionally
HPC optimized for single large job(s)!

The Power of Many: Ensemble Methods

● Ensemble-Member = task = Execution Unit
○ Multi-node, sub-node, MPI/non-MPI...
○ Simulation, Analysis, ..

● AIMES Execution Model
○ Support for heterogeneous tasks
○ Adaptive Workload: Tasks and/or relations

between tasks changes, or unknown a priori.

● Multiple dimensions of scalability:
○ Concurrency: O(10K) tasks
○ Task size: O(1)-O(1,000) cores
○ Launch: O(100+) tasks per second
○ Task duration: O(1)-O(10,000) seconds

RADICAL-Cybertools: Ensemble Toolkit (EnTK)

Many Gromacs on Titan: Close to linear scaling

● Almost perfect scaling for O(1000)
● Ongoing work to support O(1000)-O(10,000) Gromacs currently.
● Need is for O(100,000). Challenges at multiple levels.

Experiments: ORTE-LIB

● Information management!
● Agent communication layer (ZMQ) has

limited throughput
○ bulk messages
○ separate message channels
○ code optimization

● Agent scheduler (node placement)
scale well with number of cores
○ bulk operations
○ better scheduling algorithms
○ code optimization

● Collecting complete jobs is just as hard
as spawning new ones

Challenges of O(100K+) Concurrent Tasks

● PanDA deployment of Titan shows the potential of D-HTC at unprecedented
scale and for production workload.

● NGE enables the generalization and optimization of PanDA deployment on the
based of a unified conceptual framework.

● Traditional HTC and HPC distinctions are a by-product of specific
cyberinfrastructure implementations; discussions around software is misleading!

● Demonstrate how abstractions, execution models and multi-level support unify
HTC, D-HTC, HT-HPC and HPC under the same conceptual framework enabling:
○ Design and development of general-purpose middleware.
○ Management of workload and resource heterogeneity and dynamism
○ Analytical understanding of workload, middleware, and resource behavior.

Summary:

